\(\int \frac {\sqrt {a+b x^2+c x^4}}{x^4} \, dx\) [934]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 20, antiderivative size = 341 \[ \int \frac {\sqrt {a+b x^2+c x^4}}{x^4} \, dx=-\frac {\sqrt {a+b x^2+c x^4}}{3 x^3}-\frac {b \sqrt {a+b x^2+c x^4}}{3 a x}+\frac {b \sqrt {c} x \sqrt {a+b x^2+c x^4}}{3 a \left (\sqrt {a}+\sqrt {c} x^2\right )}-\frac {b \sqrt [4]{c} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{3 a^{3/4} \sqrt {a+b x^2+c x^4}}+\frac {\left (b+2 \sqrt {a} \sqrt {c}\right ) \sqrt [4]{c} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{6 a^{3/4} \sqrt {a+b x^2+c x^4}} \]

[Out]

-1/3*(c*x^4+b*x^2+a)^(1/2)/x^3-1/3*b*(c*x^4+b*x^2+a)^(1/2)/a/x+1/3*b*x*c^(1/2)*(c*x^4+b*x^2+a)^(1/2)/a/(a^(1/2
)+x^2*c^(1/2))-1/3*b*c^(1/4)*(cos(2*arctan(c^(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(c^(1/4)*x/a^(1/4)))*Ellip
ticE(sin(2*arctan(c^(1/4)*x/a^(1/4))),1/2*(2-b/a^(1/2)/c^(1/2))^(1/2))*(a^(1/2)+x^2*c^(1/2))*((c*x^4+b*x^2+a)/
(a^(1/2)+x^2*c^(1/2))^2)^(1/2)/a^(3/4)/(c*x^4+b*x^2+a)^(1/2)+1/6*c^(1/4)*(cos(2*arctan(c^(1/4)*x/a^(1/4)))^2)^
(1/2)/cos(2*arctan(c^(1/4)*x/a^(1/4)))*EllipticF(sin(2*arctan(c^(1/4)*x/a^(1/4))),1/2*(2-b/a^(1/2)/c^(1/2))^(1
/2))*(a^(1/2)+x^2*c^(1/2))*(b+2*a^(1/2)*c^(1/2))*((c*x^4+b*x^2+a)/(a^(1/2)+x^2*c^(1/2))^2)^(1/2)/a^(3/4)/(c*x^
4+b*x^2+a)^(1/2)

Rubi [A] (verified)

Time = 0.10 (sec) , antiderivative size = 341, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {1131, 1295, 1211, 1117, 1209} \[ \int \frac {\sqrt {a+b x^2+c x^4}}{x^4} \, dx=\frac {\sqrt [4]{c} \left (2 \sqrt {a} \sqrt {c}+b\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{6 a^{3/4} \sqrt {a+b x^2+c x^4}}-\frac {b \sqrt [4]{c} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{3 a^{3/4} \sqrt {a+b x^2+c x^4}}-\frac {b \sqrt {a+b x^2+c x^4}}{3 a x}+\frac {b \sqrt {c} x \sqrt {a+b x^2+c x^4}}{3 a \left (\sqrt {a}+\sqrt {c} x^2\right )}-\frac {\sqrt {a+b x^2+c x^4}}{3 x^3} \]

[In]

Int[Sqrt[a + b*x^2 + c*x^4]/x^4,x]

[Out]

-1/3*Sqrt[a + b*x^2 + c*x^4]/x^3 - (b*Sqrt[a + b*x^2 + c*x^4])/(3*a*x) + (b*Sqrt[c]*x*Sqrt[a + b*x^2 + c*x^4])
/(3*a*(Sqrt[a] + Sqrt[c]*x^2)) - (b*c^(1/4)*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + b*x^2 + c*x^4)/(Sqrt[a] + Sqrt[c
]*x^2)^2]*EllipticE[2*ArcTan[(c^(1/4)*x)/a^(1/4)], (2 - b/(Sqrt[a]*Sqrt[c]))/4])/(3*a^(3/4)*Sqrt[a + b*x^2 + c
*x^4]) + ((b + 2*Sqrt[a]*Sqrt[c])*c^(1/4)*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + b*x^2 + c*x^4)/(Sqrt[a] + Sqrt[c]*
x^2)^2]*EllipticF[2*ArcTan[(c^(1/4)*x)/a^(1/4)], (2 - b/(Sqrt[a]*Sqrt[c]))/4])/(6*a^(3/4)*Sqrt[a + b*x^2 + c*x
^4])

Rule 1117

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(
a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^2 + c*x^4]))*EllipticF[2*ArcTan[q*x], 1/2 - b*(q^2/(
4*c))], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1131

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*x^2
+ c*x^4)^p/(d*(m + 1))), x] - Dist[2*(p/(d^2*(m + 1))), Int[(d*x)^(m + 2)*(b + 2*c*x^2)*(a + b*x^2 + c*x^4)^(p
 - 1), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b^2 - 4*a*c, 0] && GtQ[p, 0] && LtQ[m, -1] && IntegerQ[2*p] &&
(IntegerQ[p] || IntegerQ[m])

Rule 1209

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(
-d)*x*(Sqrt[a + b*x^2 + c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 +
 q^2*x^2)^2)]/(q*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[2*ArcTan[q*x], 1/2 - b*(q^2/(4*c))], x] /; EqQ[e + d*q^2,
 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1211

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(
e + d*q)/q, Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x]
/; NeQ[e + d*q, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1295

Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[d*(f
*x)^(m + 1)*((a + b*x^2 + c*x^4)^(p + 1)/(a*f*(m + 1))), x] + Dist[1/(a*f^2*(m + 1)), Int[(f*x)^(m + 2)*(a + b
*x^2 + c*x^4)^p*Simp[a*e*(m + 1) - b*d*(m + 2*p + 3) - c*d*(m + 4*p + 5)*x^2, x], x], x] /; FreeQ[{a, b, c, d,
 e, f, p}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[m, -1] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])

Rubi steps \begin{align*} \text {integral}& = -\frac {\sqrt {a+b x^2+c x^4}}{3 x^3}+\frac {1}{3} \int \frac {b+2 c x^2}{x^2 \sqrt {a+b x^2+c x^4}} \, dx \\ & = -\frac {\sqrt {a+b x^2+c x^4}}{3 x^3}-\frac {b \sqrt {a+b x^2+c x^4}}{3 a x}-\frac {\int \frac {-2 a c-b c x^2}{\sqrt {a+b x^2+c x^4}} \, dx}{3 a} \\ & = -\frac {\sqrt {a+b x^2+c x^4}}{3 x^3}-\frac {b \sqrt {a+b x^2+c x^4}}{3 a x}-\frac {\left (b \sqrt {c}\right ) \int \frac {1-\frac {\sqrt {c} x^2}{\sqrt {a}}}{\sqrt {a+b x^2+c x^4}} \, dx}{3 \sqrt {a}}+\frac {1}{3} \left (\left (\frac {b}{\sqrt {a}}+2 \sqrt {c}\right ) \sqrt {c}\right ) \int \frac {1}{\sqrt {a+b x^2+c x^4}} \, dx \\ & = -\frac {\sqrt {a+b x^2+c x^4}}{3 x^3}-\frac {b \sqrt {a+b x^2+c x^4}}{3 a x}+\frac {b \sqrt {c} x \sqrt {a+b x^2+c x^4}}{3 a \left (\sqrt {a}+\sqrt {c} x^2\right )}-\frac {b \sqrt [4]{c} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{3 a^{3/4} \sqrt {a+b x^2+c x^4}}+\frac {\left (b+2 \sqrt {a} \sqrt {c}\right ) \sqrt [4]{c} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{6 a^{3/4} \sqrt {a+b x^2+c x^4}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 10.56 (sec) , antiderivative size = 459, normalized size of antiderivative = 1.35 \[ \int \frac {\sqrt {a+b x^2+c x^4}}{x^4} \, dx=\frac {-4 \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} \left (a+b x^2\right ) \left (a+b x^2+c x^4\right )+i b \left (-b+\sqrt {b^2-4 a c}\right ) x^3 \sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x^2}{b+\sqrt {b^2-4 a c}}} \sqrt {\frac {2 b-2 \sqrt {b^2-4 a c}+4 c x^2}{b-\sqrt {b^2-4 a c}}} E\left (i \text {arcsinh}\left (\sqrt {2} \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} x\right )|\frac {b+\sqrt {b^2-4 a c}}{b-\sqrt {b^2-4 a c}}\right )-i \left (-b^2+4 a c+b \sqrt {b^2-4 a c}\right ) x^3 \sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x^2}{b+\sqrt {b^2-4 a c}}} \sqrt {\frac {2 b-2 \sqrt {b^2-4 a c}+4 c x^2}{b-\sqrt {b^2-4 a c}}} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {2} \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} x\right ),\frac {b+\sqrt {b^2-4 a c}}{b-\sqrt {b^2-4 a c}}\right )}{12 a \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} x^3 \sqrt {a+b x^2+c x^4}} \]

[In]

Integrate[Sqrt[a + b*x^2 + c*x^4]/x^4,x]

[Out]

(-4*Sqrt[c/(b + Sqrt[b^2 - 4*a*c])]*(a + b*x^2)*(a + b*x^2 + c*x^4) + I*b*(-b + Sqrt[b^2 - 4*a*c])*x^3*Sqrt[(b
 + Sqrt[b^2 - 4*a*c] + 2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])]*Sqrt[(2*b - 2*Sqrt[b^2 - 4*a*c] + 4*c*x^2)/(b - Sqrt[
b^2 - 4*a*c])]*EllipticE[I*ArcSinh[Sqrt[2]*Sqrt[c/(b + Sqrt[b^2 - 4*a*c])]*x], (b + Sqrt[b^2 - 4*a*c])/(b - Sq
rt[b^2 - 4*a*c])] - I*(-b^2 + 4*a*c + b*Sqrt[b^2 - 4*a*c])*x^3*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^2)/(b + Sqr
t[b^2 - 4*a*c])]*Sqrt[(2*b - 2*Sqrt[b^2 - 4*a*c] + 4*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]*EllipticF[I*ArcSinh[Sqrt[
2]*Sqrt[c/(b + Sqrt[b^2 - 4*a*c])]*x], (b + Sqrt[b^2 - 4*a*c])/(b - Sqrt[b^2 - 4*a*c])])/(12*a*Sqrt[c/(b + Sqr
t[b^2 - 4*a*c])]*x^3*Sqrt[a + b*x^2 + c*x^4])

Maple [A] (verified)

Time = 1.08 (sec) , antiderivative size = 398, normalized size of antiderivative = 1.17

method result size
risch \(-\frac {\sqrt {c \,x^{4}+b \,x^{2}+a}\, \left (b \,x^{2}+a \right )}{3 x^{3} a}+\frac {c \left (\frac {a \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, F\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )}{2 \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}}-\frac {b a \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \left (F\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )-E\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )\right )}{2 \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}\, \left (b +\sqrt {-4 a c +b^{2}}\right )}\right )}{3 a}\) \(398\)
default \(-\frac {\sqrt {c \,x^{4}+b \,x^{2}+a}}{3 x^{3}}-\frac {b \sqrt {c \,x^{4}+b \,x^{2}+a}}{3 a x}+\frac {c \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, F\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )}{6 \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}}-\frac {b c \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \left (F\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )-E\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )\right )}{6 \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}\, \left (b +\sqrt {-4 a c +b^{2}}\right )}\) \(404\)
elliptic \(-\frac {\sqrt {c \,x^{4}+b \,x^{2}+a}}{3 x^{3}}-\frac {b \sqrt {c \,x^{4}+b \,x^{2}+a}}{3 a x}+\frac {c \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, F\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )}{6 \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}}-\frac {b c \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \left (F\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )-E\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )\right )}{6 \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}\, \left (b +\sqrt {-4 a c +b^{2}}\right )}\) \(404\)

[In]

int((c*x^4+b*x^2+a)^(1/2)/x^4,x,method=_RETURNVERBOSE)

[Out]

-1/3*(c*x^4+b*x^2+a)^(1/2)*(b*x^2+a)/x^3/a+1/3*c/a*(1/2*a*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2)*(4-2*(-b+(
-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)*(4+2*(b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)/(c*x^4+b*x^2+a)^(1/2)*EllipticF(1/2*x
*2^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2),1/2*(-4+2*b*(b+(-4*a*c+b^2)^(1/2))/a/c)^(1/2))-1/2*b*a*2^(1/2)/((-b
+(-4*a*c+b^2)^(1/2))/a)^(1/2)*(4-2*(-b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)*(4+2*(b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/
2)/(c*x^4+b*x^2+a)^(1/2)/(b+(-4*a*c+b^2)^(1/2))*(EllipticF(1/2*x*2^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2),1/2
*(-4+2*b*(b+(-4*a*c+b^2)^(1/2))/a/c)^(1/2))-EllipticE(1/2*x*2^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2),1/2*(-4+
2*b*(b+(-4*a*c+b^2)^(1/2))/a/c)^(1/2))))

Fricas [A] (verification not implemented)

none

Time = 0.08 (sec) , antiderivative size = 303, normalized size of antiderivative = 0.89 \[ \int \frac {\sqrt {a+b x^2+c x^4}}{x^4} \, dx=-\frac {\sqrt {\frac {1}{2}} {\left (a b x^{3} \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} - b^{2} x^{3}\right )} \sqrt {a} \sqrt {\frac {a \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} - b}{a}} E(\arcsin \left (\sqrt {\frac {1}{2}} x \sqrt {\frac {a \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} - b}{a}}\right )\,|\,\frac {a b \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} + b^{2} - 2 \, a c}{2 \, a c}) + \sqrt {\frac {1}{2}} {\left ({\left (2 \, a^{2} - a b\right )} x^{3} \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} + {\left (2 \, a b + b^{2}\right )} x^{3}\right )} \sqrt {a} \sqrt {\frac {a \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} - b}{a}} F(\arcsin \left (\sqrt {\frac {1}{2}} x \sqrt {\frac {a \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} - b}{a}}\right )\,|\,\frac {a b \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} + b^{2} - 2 \, a c}{2 \, a c}) + 2 \, \sqrt {c x^{4} + b x^{2} + a} {\left (a b x^{2} + a^{2}\right )}}{6 \, a^{2} x^{3}} \]

[In]

integrate((c*x^4+b*x^2+a)^(1/2)/x^4,x, algorithm="fricas")

[Out]

-1/6*(sqrt(1/2)*(a*b*x^3*sqrt((b^2 - 4*a*c)/a^2) - b^2*x^3)*sqrt(a)*sqrt((a*sqrt((b^2 - 4*a*c)/a^2) - b)/a)*el
liptic_e(arcsin(sqrt(1/2)*x*sqrt((a*sqrt((b^2 - 4*a*c)/a^2) - b)/a)), 1/2*(a*b*sqrt((b^2 - 4*a*c)/a^2) + b^2 -
 2*a*c)/(a*c)) + sqrt(1/2)*((2*a^2 - a*b)*x^3*sqrt((b^2 - 4*a*c)/a^2) + (2*a*b + b^2)*x^3)*sqrt(a)*sqrt((a*sqr
t((b^2 - 4*a*c)/a^2) - b)/a)*elliptic_f(arcsin(sqrt(1/2)*x*sqrt((a*sqrt((b^2 - 4*a*c)/a^2) - b)/a)), 1/2*(a*b*
sqrt((b^2 - 4*a*c)/a^2) + b^2 - 2*a*c)/(a*c)) + 2*sqrt(c*x^4 + b*x^2 + a)*(a*b*x^2 + a^2))/(a^2*x^3)

Sympy [F]

\[ \int \frac {\sqrt {a+b x^2+c x^4}}{x^4} \, dx=\int \frac {\sqrt {a + b x^{2} + c x^{4}}}{x^{4}}\, dx \]

[In]

integrate((c*x**4+b*x**2+a)**(1/2)/x**4,x)

[Out]

Integral(sqrt(a + b*x**2 + c*x**4)/x**4, x)

Maxima [F]

\[ \int \frac {\sqrt {a+b x^2+c x^4}}{x^4} \, dx=\int { \frac {\sqrt {c x^{4} + b x^{2} + a}}{x^{4}} \,d x } \]

[In]

integrate((c*x^4+b*x^2+a)^(1/2)/x^4,x, algorithm="maxima")

[Out]

integrate(sqrt(c*x^4 + b*x^2 + a)/x^4, x)

Giac [F]

\[ \int \frac {\sqrt {a+b x^2+c x^4}}{x^4} \, dx=\int { \frac {\sqrt {c x^{4} + b x^{2} + a}}{x^{4}} \,d x } \]

[In]

integrate((c*x^4+b*x^2+a)^(1/2)/x^4,x, algorithm="giac")

[Out]

integrate(sqrt(c*x^4 + b*x^2 + a)/x^4, x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+b x^2+c x^4}}{x^4} \, dx=\int \frac {\sqrt {c\,x^4+b\,x^2+a}}{x^4} \,d x \]

[In]

int((a + b*x^2 + c*x^4)^(1/2)/x^4,x)

[Out]

int((a + b*x^2 + c*x^4)^(1/2)/x^4, x)